Linking Twitter Events With Stock Market Jitters

نویسندگان

  • Fani Tsapeli
  • Nikolaos Bezirgiannidis
  • Peter Tiño
  • Mirco Musolesi
چکیده

Correspondence: [email protected] School of Computer Science, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom Full list of author information is available at the end of the article Abstract Predicting investors reactions to financial and political news is important for the early detection of stock market jitters. Evidence from several recent studies suggests that online social media could improve prediction of stock market movements. However, utilizing such information to predict strong stock market fluctuations has not been explored so far. In this work, we propose a novel event detection method on Twitter, tailored to detect financial and political events that influence a specific stock market. The proposed approach applies a bursty topic detection method on a stream of tweets related to finance or politics followed by a classification process which filters-out events that do not influence the examined stock market. We train our classifier to recognise real events by using solely information about stock market volatility, without the need of manual labeling. We model Twitter events as feature vectors that encompass a rich variety of information, such as the geographical distribution of tweets, their polarity, information about their authors as well as information about bursty words associated with the event. We show that utilizing only information about tweets polarity, like most previous studies, results in wasting important information. We apply the proposed method on high-frequency intra-day data from the Greek and Spanish stock market and we show that our financial event detector successfully predicts most of the stock market jitters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Public Discussion of Occupying Wall Street on Twitter: Linking Twitter Streams with Search Quires, Opinion Polls, Media Coverage, and Stock Market Index

To evaluate the public opinion expression of occupying Wall Street on Twitter, this paper aims to investigate time series of tweet stream, search query, media coverage, stock market, and opinion polls. The findings reveals that: first, the dynamic change of total tweet stream, retweets, discussions, and hashtags are parallel; second, tweet stream and search query are strongly correlated, while ...

متن کامل

Stock Market Prediction Using Twitter Mood

-In the modern times of the information age, the magnitude of social media activity has reached unprecedented levels. Twitter is one such popular online social networking and micro-blogging service, which enables hundreds of millions of users share short messages in real time about events worth broad attention expressing public opinion. In this paper, we investigate the relationship between Twi...

متن کامل

Correlating S&P 500 Stocks with Twitter Data

Twitter is a widely used online social media. One important characteristic of Twitter is its real-time nature. In this paper, we investigate whether the daily number of tweets that mention Standard & Poor 500 (S&P 500) stocks is correlated with S&P 500 stock indicators (stock price and traded volume) at three different levels, from the stock market to industry sector and individual company stoc...

متن کامل

Twitter sentiment around the Earnings Announcement events

We investigate the relationship between social media, Twitter in particular, and stock market. We provide an in-depth analysis of the Twitter volume and sentiment about the 30 companies in the Dow Jones Industrial Average index, over a period of three years. We focus on Earnings Announcements and show that there is a considerable difference with respect to when the announcements are made: befor...

متن کامل

Tweets Miner for Stock Market Analysis

In this paper, we present a software package for the data mining of Twitter microblogs for the purpose of using them for the stock market analysis. The package is written in R langauge using apropriate R packages. The model of tweets has been considered. We have also compared stock market charts with frequent sets of keywords in Twitter microblogs messages.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1709.06519  شماره 

صفحات  -

تاریخ انتشار 2017